
 

Computer project: 
(a) (25 pts) Fit the data in a least squares sense with polynomials of degrees 1 through 5. 

Compare the fitted polynomial with erf(t) for values of t between the data points. How does 

the maximum error depend on the polynomial degree? Make a chart of maximum errors 

versus n. (Question to ponder: How would you compute the maximum error?).  

Using least square fitting on polynomial order function the following coefficients are estimated.  

Order 1: C1: 1.79e-17, C2: 0.14 

Order 2: C1: 5.26e-17, C2: 0.14, C3: -1.74e-18 

Order 3: C1: 8.51e-17, C2: 0.26, C3: -3.66e-18, C4: -1.8e-3 

Order 4: C1: 3.00e-18, C2: 0.26, C3: 3.00e-18, C4: -1.8e-3, C5: -4.37e-20 

Order 5: C1: -1.80e-17, C2: 0.38, C3: 6.54e-18, C4:-6.98e-3, C5: -9.41e-20, C6: 4.24e-05  

Their response of the polynomial equation when we plug in these coefficients are shown below: 

 

In the bottom right graph, it can be seen that the maximum error is gradually decreasing as n is 

increased. 

  



 

(b) (15 pts) Because erf(t) is an odd function of t, that is, erf(x) = −erf(−x), it is reasonable to fit the 

data by a linear combination of odd powers of t. Try degrees 1, 3, and 5. Again, study how the 

error between data points depends on n. (Question to ponder: Would this extra care of 

exploiting oddness help to improve the fitting?)  

As can be seen in the above graph the max. error was not dropping linearly but in steps. Therefore, it 

will be a nice idea to try it for odd values of n. With this condition the plot is shown below: 

 

Now it can be seen that max. error linearly decreasing as odd values of n are increased. 

 

 

 

 

 

 

  



 

(c) (20 pts) Polynomials are not particularly good approximants for erf(t) because they are 

unbounded for large t, whereas erf(t) approaches 1 for large t. Try a model of the form c(t) = 

c1 + e −t 2 (c2 + c3z + c4z 2 + c5z 3 ), where z = 1/(1 + t). (How does the error between the data 

points compare with the polynomial models?) 

Now by considering this type of model, the least square approximation resulted in the plot shown 

below: 

 

It can be seen that the following model fits well for values of time between -2 to 2 seconds more than 

the maximum order polynomial. Therefore, max. error is expected to be much less within this region for 

values within the range of -2 to 2. 

  



 

Appendix: Code 

Code for part 1: 
 
% Generating 21 random points 

% tk = 20*rand(21,1) - 10; 

tk = [-10:10]'; 

yk = erf(tk); 
  

% Fitting data using polynomial least square 

for deg = 1:5 
     

    T{deg} = []; 
     

    for i = 0:deg 

        T{deg} = [T{deg} tk.^i]; 

    end; 
     

    coeff{deg} = T{deg}\yk; 
     

end; 
  

t = [-10:10]'; 

y = erf(t); 
  

% Getting output given the estimated coefficients 

% and comparing it with actual output 

figure; 

for deg = 1:5 
     

    T = []; 
     

    for i = 0:deg 

        T = [T t.^i]; 

    end; 
     

    yest(:,deg) = T*coeff{deg}; 
     

    subplot(2,3,deg); 

    plot(t,y,'k:'); 

    hold on; plot(t,yest(:,deg)); 

    title(['LS fitting using polynomial of degree ',num2str(deg)]); 
     

end; 
  

% Getting max error in the estimated and actual outputs 

maxerr = max(repmat(y,[1,5]) - yest); 
  

subplot(2,3,6); 

plot(1:5,maxerr); 

title('Error between estimated and actual output for different polynomial orders'); 

xlabel('Order (n)'); 

ylabel('Max. error'); 

ylim([0 1]); 

 

  



 

Code for part 2: 
 
clear('T','yest') 
  

% Fitting data using polynomial least square 

D = [1,3,5]; 

for deg = 1:length(D) 
     

    T{deg} = []; 
     

    for i = 0:D(deg) 

        T{deg} = [T{deg} tk.^i]; 

    end; 
     

    coeff{deg} = T{deg}\yk; 
     

end; 
  

t = [-10:10]'; 

y = erf(t); 
  

% Getting output given the estimated coefficients 

% and comparing it with actual output 

figure; 

for deg = 1:length(D) 
     

    T = []; 
     

    for i = 0:D(deg) 

        T = [T t.^i]; 

    end; 
     

    yest(:,deg) = T*coeff{deg}; 
     

    subplot(2,2,deg); 

    plot(t,y,'k:'); 

    hold on; plot(t,yest(:,deg)); 

    title(['LS fitting using polynomial of degree ',num2str(D(deg))]); 
     

end; 
  

% Getting max error in the estimated and actual outputs 

maxerr = max(repmat(y,[1,3]) - yest); 
  

subplot(2,2,4); 

plot(D,maxerr); 

title('Error between estimated and actual output for different polynomial orders'); 

xlabel('Order (n)'); 

ylabel('Max. error'); 

ylim([0 1]); 

 

 

  



 

Code for part 3: 
 
clear('T','yest'); 
  

tk = [-10:10]'; 

yk = erf(tk); 
  

% Fitting data using polynomial least square 

T = ones(length(tk),1); 

for i = 0:3 

    T = [T exp(-tk.^2).*(1./(1.1+tk)).^i]; 

end; 
  

coeffexp = T\yk; 
  

t = [-10:10]'; 

y = erf(t); 
  

% Getting output given the estimated coefficients 

% and comparing it with actual output 

T = ones(length(t),1); 

for i = 0:3 

    T = [T exp(-t.^2).*(1./(1.1+t)).^i]; 

end; 

yestexp = T*coeffexp; 
  

figure;plot(t,y,'k-'); 

hold on; plot(t,yestexp); 

title('LS exponential fitting'); 

legend('Actual','LS approx.'); 

 

 


